
TRAINING, CONSULTING
& DEVELOPMENT SERVICES

2022

EDITORIAL

Why C++?

The C++ language (http://isocpp.org) is currently used by millions of developers
around the world and the decision to use this language in many projects is due to
several factors: availability of high-level abstractions with excellent performance,
access to low-level when needed, cross-domain applicability, high portability, zero
overhead (no additional penalties for not using advanced language features),
excellent resource management, and industry dominance. With the modernization
of the programming language in the C++11/14/17/20 standards, its adoption is
considerably expanded, mainly in the areas of mobile and cloud computing.

Why Qt?

Qt (http://www.qt.io) is a cross-platform software development toolkit adopted by
more than 70 industries worldwide, in desktop, mobile, embedded systems and
IoT (Internet of Things) areas. Qt allows the development of systems for different
platforms such as Windows, GNU/Linux, OS X, Android and iOS with a single
source code, has extensive documentation, high productivity and excellent
performance even on the most modest platforms.

 Software Development with C++ and Qt

./The%20C++%20language%20(http://isocpp.org)%20is%20currently%20used%20by%20millions%20of%20developers%20around%20the%20world%20and%20the%20decision%20to%20use%20this%20language%20in%20many%20projects%20is%20due%20to%20several%20factors:%20availability%20of%20high-level%20abstractions%20with%20excellent%20performance,%20access%20to%20low-level%20when%20needed,%20cross-domain%20applicability,%20high%20portability,%20zero%20overhead%20(no%20additional%20penalties%20for%20not%20using%20advanced%20language%20features),%20excellent%20resource%20management,%20and%20industry%20dominance.%20With%20the%20modernization%20of%20the%20programming%20language%20in%20the%20C++11/14/17/20%20standards,%20its%20adoption%20is%20considerably%20expanded,%20mainly%20in%20the%20areas%20of%20mobile%20and%20cloud%20computing.
http://www.qt.io/

ABOUT QMOB SOLUTIONS

Qmob Solutions (http://qmob.solutions) is a company specialized in training,
consulting and development services based on C++ and Qt technologies. Created
by C++ and Qt specialists with more than 20 years of experience, Qmob Solutions
values the offer of training sessions adapted to the customer's needs and the
development of correct and efficient solutions from a Software Engineering point
of view, reducing maintenance costs and meeting the most important non-
functional requirements of the project. Our focus is on delivering elegant and
functional solutions for multiple platforms: Windows, Linux, OS X, iOS, Android
and embedded platforms, building on top of the many benefits that C++ and Qt
have in maintaining a single codebase for multiple platforms. Qmob Solutions
engineers are also highly experienced in the definition and implementation of
mature development processes, QA (Quality Assurance) and CI/CD (Continuous
Integration/Continuous Delivery), combining agility and process/product quality.

As presented at https://www.qt.io/contact-us/partners, Qmob Solutions is the
first and only official The Qt Company’s Service Partner (the company that
currently develops Qt) in Brazil and Latin-America. As a result, Qmob Solutions
further strengthens its relationship with the global Qt community, ensuring
always up-to-date training, effective and productive consulting, as well as access
to the latest Qt news.

https://www.qt.io/contact-us/partners
http://qmob.solutions/

TABLE OF CONTENTS

Fundamentals of C++ 6
Developing GUI Applications with Qt Widgets 8
Fundamentals of QML 10
Client-Server Applications with Qt and RESTful 12
Developing Android Applications with Qt 14
Design Patterns with Qt 16
Computer Graphics with Qt Quick 3D 18
Embedded Systems with Qt 20
Optimizing Qt Applications 22
Advanced C++ 24
Advanced QML 26
Quality Assurance, DevOps, and Continuous Delivery for Qt Projects 28
Qt for Python 30
Game Development with Qt 32

 Training Services

Architecture Design & Analysis 34
Software Development and Quality Assurance Processes 35
Qt Migration Planning 36
Qt Licensing Analysis 37

Outsource Software Development 38

 Consulting Services

 Development Services

FUNDAMENTALS OF C++

The C++ language is a powerful tool for building flexible, integrable systems with
excellent performance. Its abstraction mechanisms and high degree of portability
make C++ the language of choice for systems development in areas such as
manufacturing, high performance, cloud computing, and mobile applications.

In this training, we present the basics of C++ and how the main features from
Object Orientation are used in it. At the end of the training, the student should be
able to correctly and systematically apply the main language resources; building
systems that are easy to maintain, with high performance and capable of running
on multiple platforms.

 Programming logic
 Basics of object-oriented programming (desirable)

 Overview and Goals

 Prerequisites

40h

 Live classes with fundamentals and practices
 Laboratory practices

 C++ language overview
 Objects and classes
 Member functions and data members
 Visibility and encapsulation operators
 Constructors, destructors and copy constructors
 Aggregation and composition
 Sub-classing
 Overriding member function
 Sub-typing
 Virtual functions, polymorphism and dynamic binding
 Abstract interfaces and abstract classes

 Duration

 Method

 Contents

DEVELOPING GUI APPLICATIONS WITH Qt WIDGETS

Qt is a cross-platform development toolkit, created over 25 years ago and widely
used in industries around the world. QtWidgets is the Qt's module for creating
graphical user interfaces (GUI) using the C++ language and offers a wide set of
features for creating complex workflows and sophisticated interfaces.

In this training, the basic concepts of Qt (used not only in visual applications) and
its main resources for cross-platform development of graphical user interfaces
are presented. At the end of the training, the student should be able to
productively implement visual systems that can be executed on different
platforms.

 Foundations of C++
 Basics of graphical user interfaces development (desirable)

40h

 Live classes with fundamentals and practices
 Laboratory practices

 Overview and Goals

 Prerequisites

 Duration

 Method

 Qt overview
 MOC (Meta-Object Compiler) and the Qt Object Model
 Signals and slots
 Object (dynamic) properties
 Meta-objects, parentship relations, and memory ownership
 UIC (User Interface Compiler) and the Qt Designer
 Main windows, layouts and dialogs
 Programming with model/view
 Qt containers
 Database access
 Input/Output with XML and JSON

 Contents

FUNDAMENTALS OF QML

QML is a declarative language for creating graphical interfaces and is an integral
part of the Qt toolkit. Among its main advantages, the following stand out: low
learning curve, high productivity, expressiveness in the construction of graphical
interfaces for tablets and smartphones, high performance leveraged by the
support to run on GPUs and ease of integration with languages such as JavaScript
and C++.

In this training, the fundamentals of the QML language and its main resources for
creating modern interfaces are presented. At the end of the training, the student
should be able to productively design and implement graphical interfaces suitable
for execution on multiple devices.

 Basics of graphical user interfaces development (desirable)

40h

 Overview and Goals

 Prerequisites

 Duration

 Live classes with fundamentals and practices
 Laboratory practices

 Introduction to Qt, QML, and QtQuick
 Basic QML syntax (import sentences, object declaration, comments)
 QML object attributes
 Property binding
 Integrating QML and JavaScript
 QML type system
 Documents and modules
 Handling data entry
 Qt QuickControls
 Positioning elements (bindings, manual, anchors, positioners and layouts)
 Model/View with QML
 QML components and dynamic instantiation
 Animations and state machines
 Internationalization and localization

 Method

 Contents

CLIENT-SERVER APPLICATIONS WITH Qt AND RESTful

RESTful is a technology widely used in the implementation of web services, it is
based on the HTTP protocol and is influenced by the REST architectural style.
Designing client-server applications with back-end functionality implemented as
RESTful services has been a common architectural pattern in domains such as
mobile applications, web systems and cloud computing applications.

In this training, we cover Qt features for invoking RESTful services and handling
XML and JSON data, as well as techniques for implementing RESTful services. At
the end of the training, the student should be able to design and implement
client-server systems using Qt.

 Overview and Goals

 Programming logic
 Fundamentals of QML
 Fundamentals of JavaScript (desirable)

40h

 Live classes with fundamentals and practices
 Laboratory practices

 Introduction to RESTful architectures
 RESTful servers with Ruby Sinatra
 RESTful clients with QML and JavaScript
 RESTful clients with QML and C++
 Working with local caches
 Disconnected operations and synchronization
 Basic features for web scraping
 RESTful client architectures with QML

 Prerequisites

 Duration

 Method

 Contents

DEVELOPING ANDROID APPLICATIONS WITH Qt

Applications for mobile platforms, such as smartphones and tablets, have
drastically changed the way we interact with technology. In this scenario, Qt has
the particular advantage of supporting platforms such as Android and iOS with a
single codebase, reducing costs and facilitating maintenance, while providing
excellent application performance.

In this training, the main resources provided by Qt for implementing applications
for the Android platform are presented. At the end of the training, the student
should be able to create applications that use resources such as cameras,
sensors, geolocation and multimedia.

 Programming logic
 Fundamentals of QML
 Fundamentals of JavaScript (desirable)

40h

 Live classes with fundamentals and practices
 Laboratory practices

 Overview and Goals

 Prerequisites

 Duration

 Method

 Qt for Android overview
 QML on mobile devices
 Touch and multitouch support
 Camera access
 Geolocation and map services
 Using sensors
 Bluetooth and NFC
 Graphic effects and particle systems
 Audio and video
 Integrating Java code
 Implementing Android Services with Qt
 Dealing with permissions
 Generation of apks and AAB packages
 Handling SSH
 Publishing to app stores

 Contents

DESIGN PATTERNS WITH Qt

The software architecture defines basic aspects in relation to its structure and
behavior. Well-designed architectures are critical to improving maintainability,
postponing software aging, and enabling other non-functional requirements.
Design patterns represent quality solutions to recurring problems during the
detailed design phase of architectures.

In this training, we present the main architectural styles/patterns used in Qt
applications, the design patterns already available in the toolkit, and how new
patterns can be implemented. At the end of the training, the student should be
able to design and implement effective software architectures for Qt applications.

 Fundamentals of C++
 Developing GUI applications with Qt Widgets

 Overview and Goals

 Prerequisites

40h

 Live classes with fundamentals and practices
 Laboratory practices

 Software architecture fundamentals
 Microkernel architectures
 Working with plug-ins
 Building SDKs on top of Qt Creator
 Abstract Factory and Factory Method
 Composite, Bridge, Decorator, and Adapter
 Template Method, Observer, and Command
 Strategy, Flyweight, and Visitor
 MapReduce and Future
 Programming idioms for C++ and Qt

 Duration

 Method

 Contents

COMPUTER GRAPHICS WITH Qt QUICK 3D

Computer Graphics is currently present in a number of areas, from games and
digital displays to use in cinema, augmented reality, and scientific visualization.
The use of productive frameworks, with good performance and satisfactory
abstractions is fundamental in this application domain.

In this training, the main features of Qt Quick 3D are presented: a QML-based
module provided by Qt to create modern 2D/3D software applications. At the end
of the training, the student should be able to create Qt applications that perform
the visualization of polygonal meshes, as well as the use of resources related to
texture and animations.

 Overview and Goals

 Fundamentals of C++
 Developing GUI applications with Qt Widgets
 Fundamentals of QML

40h

 Live classes with fundamentals and practices
 Laboratory practices

 Introduction to Qt Quick 3D
 Polygonal meshes and geometries
 Materials
 Shaders
 Shadow mapping
 Ambient occlusion
 Physics simulation
 Collision detection
 Rigid bodies
 Particles
 Animation techniques

 Prerequisites

 Duration

 Method

 Contents

EMBEDDED SYSTEMS WITH Qt

Embedded systems are currently present in several areas such as medicine,
agribusiness, automotive industry, consumer electronics and entertainment.
Developing software solutions that work satisfactorily on platforms with limited
memory, processing and communication is a challenging task.

In this training, the basic concepts for building Linux images with Qt support are
presented, using buildroot and Yocto technologies. Technologies such as Boot2Qt
and Qt Safe Renderer are discussed and the main features of Qt for interaction
with sensors and actuators are presented. At the end of the training, the student
should be able to design and implement embedded solutions based on Qt.

 Fundamentals of Linux
 Programming logic

32h

 Live classes with fundamentals and practices
 Laboratory practices

 Overview and Goals

 Prerequisites

 Duration

 Method

 Embedded Linux fundamentals
 Toolchains, bootloaders and cross-compilation
 Qt rendering plugins for embedded systems
 Building Embedded Linux images with Buildroot
 Building Embedded Linux images with Yocto
 Interacting with general purpose peripherals
 Qt development for Raspberry Pi
 Qt development for Toradex Colibri i.MX 8
 Optimizations for low-power consumption
 Bluetooth LE
 Architectural patterns for embedded systems

 Contents

OPTIMIZING Qt APPLICATIONS

Although Qt is a toolkit designed to enable the development of high-performance
systems, some care is needed when working in domains such as high-
performance computing, data-intensive systems, or embedded systems. In these
cases, correctly using the resources offered by Qt is essential to meet the non-
functional requirements involved.

In this training, we discuss critical points where Qt applications generally lose
performance, and present the main debugging and profiling tools adopted and
basic guidelines for optimizing Qt applications. At the end of the training, the
student should be able to analyze existing Qt applications and refactor those
solutions aiming at improved performance.

 Developing GUI applications with Qt Widgets
 Fundamentals of QML

32h

 Overview and Goals

 Prerequisites

 Duration

 Live classes with fundamentals and practices
 Laboratory practices

 Debugging and profiling Qt applications
 Performance pitfalls in Qt
 GDB, AddressSanitizer, ThreadSanitizer, and Gamma Ray
 Static code analyzers
 Linux perf, hotspot, and heaptrack
 Optimizing QML applications with the QML Profiler
 Valgrind and Massif Visualizer
 KCachegrind
 Optimizing Qt applications startup
 Optimizing memory footprint

 Method

 Contents

ADVANCED C++

C++ is a multi-paradigm language, which makes it suitable for use in a variety of
scenarios and application domains. Advanced features such as templates,
metaprogramming, Standard Template Library, RTTI and the improvements
introduced in C++11, 14, 17 and 20 are quite important for building better quality
systems and for solving problems that require not-so-common object-oriented
strategies.

In this training, C++ features that contribute to the development of more flexible
and robust systems are presented. At the end of the training, the student should
be able to master techniques such as p-impl, templates, metaprogramming,
smart pointers, constexpr, perfect forwarding and lambda expressions.

 Overview and Goals

 Fundamentals of C++

40h

 Live classes with fundamentals and practices
 Laboratory practices

 Binary compatibility and and the p-impl idiom
 Templates and generic programming
 Metaprogramming fundamentals
 Standard Template Library (STL)
 Smart pointers
 constexpr
 Type inference (auto and decltype)
 Move semantics and perfect forwarding
 Lambda expressions

 Prerequisites

 Duration

 Method

 Contents

ADVANCED QML

QML has been, for some time now, the language of choice for developing graphical
user interfaces based on Qt. Advanced features such as dynamic element
management, integration with C++, customization through styles and
WebSockets make QML the technology of choice for areas such as IoT, automotive
and aerospace systems, medical devices, among others.

In this training, advanced resources are presented that enable the synergistic
integration between QML and C++, as well as functionalities for dynamic
management of QML elements. At the end of the training, the student should be
able to design and implement QML/C++ hybrid applications in a productive way.

 Fundamentals of C++
 Fundamentals of QML

40h

 Live classes with fundamentals and practices
 Laboratory practices

 Overview and Goals

 Prerequisites

 Duration

 Method

 Dynamic management of QML objects (repeaters, loaders and components)
 QML/C++ integration (advanced aspects):

 Motivation for QML/C++ integration
 QML/C++ integration types
 Defining and registering QML types in C++
 Interacting with QML objects via C++

 QML/OpenGL integration
 User Input (advanced aspects): input focus, virtual keyboard and multi-touch
 QML plugins
 WebChannel and WebSocket with QML
 Working with graphics in QML
 Advanced animations
 Unit tests with QML
 Configuring the look'n'feel of QML applications with styles

 Contents

QUALITY ASSURANCE, DEVOPS E CONTINUOUS DELIVERY
FOR Qt PROJECTS

Today's software systems are complex enough to make the use of basic tools
such as IDE's and debuggers no longer sufficient to deliver quality systems.
Current Software Engineering practices such as DevOps and Continuous Delivery
(CD) have become crucial for the development of successful solutions.

In this training, the main technologies and processes responsible for quality
management in Qt projects are presented. This includes, for example, the use of
appropriate branching models, Continuous Integration (CI), Continuous Delivery
(CD), policies for tests and reviews , as well as project management tools. At the
end of the training, the student should be able to design and implement a quality
management policy suitable for the reality of Qt projects in a given company.

 Developing GUI applications with Qt Widgets
 Fundamentals of QML
 Basics of project management (desirable)

 Overview and Goals

 Prerequisites

32h

 Live classes with fundamentals and practices
 Laboratory practices

 Introduction to Quality Management
 Git and branching models
 The quality pipeline
 Qt and automated tests
 Sanity tests
 Static code analyzers
 Qt and GitLab (merge requests, reviews and pipelines)
 Continuous Integration and Continuous Delivery with Qt and GitLab
 Continuous Deployment with Qt and Docker
 Release management
 Quality management and agile methods

 Duration

 Method

 Contents

Qt FOR PYTHON

The Python language is currently one of the most used technologies in the
development of systems in several domains and for multiple platforms. Features
such as excellent productivity, high-level abstractions, dynamic typing, multi-
paradigm support, and the availability of a variety of libraries for various purposes
are some of the main factors contributing to the widespread adoption of Python
in the industry today.

This training introduces the fundamentals of Qt for Python – the official bindings
for using Qt in Python applications. Topics such as generation of bindings via
Shiboken, available Qt modules, integration with Qt Designer and Qt Creator, as
well as implementation aspects are covered.

 Programming logic
 Basics of Python (desirable)

 Overview and Goals

 Prerequisites

40h

 Live classes with fundamentals and practices
 Laboratory practices

 Motivation for Qt for Python
 History of Qt's Python bindings
 Creating a Qt Widgets Python application
 Signals and slots
 Layouts
 Creating a QML/Qt Quick application
 Integration with Qt Designer
 Data visualization in Qt for Python
 Working with multimedia
 Web content integration with WebEngine
 Integration with C++
 Generating new bindings with Shiboken
 Deployment aspects (with fbs, PyInstaller and cx_Freeze)
 Integration with third-party libraries

 Duration

 Method

 Contents

GAME DEVELOPMENT WITH Qt

The gaming industry is one of the most dynamic, promising, and challenging
sectors in the industry today. Developing solutions with high performance, high
flexibility, modern UIs and acceptable time-to-market is a challenge faced by all
companies in the area. Additionally, designing and developing solutions that work
on the multiple hardware and communication platforms currently available makes
the situation even more difficult.

This training presents the fundamentals for building 2D and 3D games using Qt.
The main aspects related to the rendering of 2D and 3D elements, collision
detection, multiple animation techniques, ECS (Entity-Component-System)
architectures, functionalities for multimedia and network communication aspects.
At the end of the training, the student should be able to design and implement 2D
and 3D games in Qt.

 Programming logic
 Basics of Computer Graphics (desirable)
 Computer Graphics with Qt Quick 3D (desirable)

40h

 Overview and Goals

 Prerequisites

 Duration

 Live classes with fundamentals and practices
 Laboratory practices

 Developing 2D games with Qt Widgets and Qt Graphics View Framework
 Coordinate systems and creation/manipulation of graphical items
 Animating properties with easing curves and detecting collisions

 Developing 2D games with QML/Qt Quick
 Positioning QML objects
 Animating properties with easing curves and detecting collisions

 Developing 3D games with Qt Quick 3D
 Key Features of C++ and QML APIs
 Polygonal meshes, textures, mappings and collision detection

 Adding multimedia resources
 Fundamentals of building network games with Qt
 Games for Android and iOS

 Method

 Contents

ARCHITECTURE DESIGN & ANALYSIS

Delivering quality software systems is an activity that involves the adoption of
appropriate techniques and tools, from requirements analysis to system
deployment and evolution. An important activity in this process is the design and
analysis of the software architecture. It is the software architecture that makes it
possible to meet the main non-functional requirements and enables the software
to remain useful and modifiable over several years.

In these consulting activities, we carry out the design of architectures for new
systems or the analysis of already existing architectures, with the objective of
identifying points of malformation or areas that could be improved.

Architectural design; modeling architectural views; definition of architectural
constraints; detailed design and definition of technologies; architectural analysis;
architecture integration quality management; generative techniques;↔
architectures in agile processes.

 Overview and Goals

 Activities

SOFTWARE DEVELOPMENT AND QUALITY ASSURANCE
PROCESSES

Developing quality software requires the implementation of mature development
processes, where the fulfillment of steps and the products generated are
institutionalized. The objective is to systematize activities and adopt techniques
and tools that reduce the occurrence of bugs and architectural degradations.

In these consulting activities, we map the characteristics of your business and
build a plan to implement a quality development and management process,
particularly adapted to the reality of your company.

Business characterization; determination of the required degree of agility;
definition of the development process; definition of the quality management
process; selection of practices and tools; deployment plan; team training.

 Overview and Goals

 Activities

Qt MIGRATION PLANNING

The use of legacy systems, with restrictions and/or obsolescence related to
architectures, programming languages, graphical user interfaces and integration
capabilities, is a very common situation in many corporations. Migrating such
solutions to more powerful and flexible technologies should always be considered,
with the aim of delaying software aging. In these consulting activities, we analyze
the solution currently adopted in your company and specify a migration plan
focused on the adoption of Qt and other related technologies. The objective is to
carry out a preliminary survey of costs, deadlines and the team needed to
implement the new solution.

Analysis of the architecture of the current solution; analysis of functional and non-
functional requirements; assessment of the need for architectural redesign;
definition of necessary technologies; migration planning; estimation of costs,
deadlines and staff.

 Overview and Goals

 Activities

Qt LICENSING ANALYSIS

Qt is currently licensed in two modalities: Qt Open Source (free licensing) and Qt
Commercial (paid licensing). The use of Qt Open Source is regulated through the
(L)GPL v3 license, which brings a series of benefits and obligations to be met. In
some scenarios, application domains and commercialization models, however,
certain aspects of the (L)GPL v3 cannot be met and therefore a commercial license
must be acquired.

This group of activities aims to analyze the customer's technical, commercial and
strategic scenario, in order to indicate whether the (L)GPL v3 can be fully met or if
there are demands for the use of a commercial license.

Survey of the type of product being developed (application, embedded solution,
SDK, etc); analysis of the requirements of LGPL v3; static vs dynamic linking
considerations; license types.

 Overview and Goals

 Activities

OUTSOURCE SOFTWARE DEVELOPMENT

Qmob Solutions has a complete team of Qt engineers and architects to build your
desktop, mobile, or embedded system. In addition to developing front-end
solutions, we have experienced professionals in the development of RESTful back-
ends using technologies such as Sinatra (Ruby), Flask (Python), and Amazon Web
Services. As a result, Qmob Solutions delivers complete solutions, ensuring the
adoption of best practices in Software Engineering and the delivery of well-
architected and easy-to-evolve systems.

 Requisites elucidation and documentation
 Development project planning

Variable

 Overview and Goals

 Prerequisites

 Duration

 Agile methods
 Lean Architecture

 Requirements elucidation
 Architectural design
 Detailed project
 Sprint planning
 System development
 Definition of test strategies
 Definition of Continuous Integration (CI) strategies
 Definition of Continuous Delivery (CD) strategies
 Release process
 Deployment planning
 Evolution planning

 Activities

 Method

TRAINING, CONSULTING
& DEVELOPMENT SERVICES

2022

